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Introduction:  Vanadium concentrations in plane-

tary mantles can provide information about the condi-
tions during early accretion and differentiation [1,2].  
Because V is a slightly siderophile element, it is usu-
ally assumed that any depletion would be due to core 
formation and metal-silicate equilibrium (e.g., [3,4]).  
However, V is typically more compatible in phases 
such as spinel, magnesiowüstite and garnet.  Fractiona-
tion of all of these phases would cause depletions more 
marked than those from metal.  In this paper considera-
tion of depletions due to metal, oxide and silicate are 
critically evaluated. 

 

Vanadium compatibility:   
Metal: the partitioning of V between metal and silicate 
has been studied extensively at both low and high pres-
sure and temperature conditions (e.g., [2, 3, 5-8], lead-
ing [3] to propose a predictive expression for D(V) 
met/sil, based on the S and C content of the metal, 
temperature and oxygen fugacity.  This predictive ex-
pression does not include a pressure term because in-
spection of the data reveals no obvious pressure effect.  
This expression can be used to predict D(V) 
metal/silicate as a function of fO2, at fixed T and metal 
composition (Fig. 1).  The significant fO2 effect shows 
that V switches from lithophile (D<1) to siderophile 
(D>1) at approximately 3 log fO2 units below the IW 
buffer.   
Shallow mantle: The partitioning of V during condi-
tions of melting of the shallow terrestrial mantle has 
been studied extensively by [9], and is known to be 
controlled by spinel (see also [10]) and clinopyroxene.  
Similar to metal-bearing systems, V partitioning is 
strongly fO2 dependent, and can switch from compati-
ble to incompatible behavior within a range relevant to 
planetary mantles (Fig. 1).   
Intermediate mantle: Both the martian and terrestrial 
mantles contain a large stability field for majoritic gar-
net and β (Mg,Fe)2SiO4 (e.g., [11]).  There are very 
few data for these phases, and certainly not enough to 
assess whether there is also a dependence upon fO2.  
However, given the available crystal chemical diver-
sity in these phases, the interplay of 2+, 3+, and 4+ 
vanadium is likely to produce fO2 dependent behavior.   
Deep mantle: Several studies have measured the parti-
tioning of V between deep mantle (terrestrial lower 
mantle) phases that may be relevant to early Mars as 
well.  Magnesiowüstite is a significant host phase for 
V and can have D(V) as high as 4 to 6 [7].  Previous 

studies of both Mg- and Ca-silicate perovskite and 
melt have shown that D(V) may be as high as 2-3 [12-
13].  The deep mantle may thus also be host to a sig-
nificant amount of V, especially if there was early frac-
tionation of these phases from a magma ocean. 
Summary of all phases: To illustrate the potential for 
silicate and oxide phases to dominate the V budget, 
two different scenarios are illustrated in Figure 1: 
variation of D(metal/silicate) [3] and D(shallow man-
tle/silicate) [9], as a function of oxygen fugacity (the 
latter based on a mantle consisting of 49% olivine, 
28% opx, 18% cpx and 5% spinel).  Each of these sce-
narios shows that vanadium will be dominated by dif-
ferent phases depending on the environment of melt-
ing. 

Figure 1: comparison of D(V) Metal/silicate liquid [3],  
and D(shallow mantle/silicate) [9], as a function of 
oxygen fugacity.   

 
Summary of depletions 

Depletions of V in planetary mantles are best de-
fined relative to an element of similar lithophile behav-
ior – Al [14].  Correlations of V and Al are evident in 
terrestrial sample suites, but must be interpreted for 
other planetary bodies using data from basaltic rocks.  
As a result, there is some interpretation necessary.  A 
summary of V depletions for Earth, Moon, Mars and 
Vesta is presented in Figure 2. 
Earth: The V content of the primitive terrestrial mantle 
is defined by analyses of komatiites, peridotites and 
basaltic rocks.  All of these samples define a small, but 
significant depletion of V relative to chondritic values.   
Moon: The V content of the lunar mantle can be esti-
mated from the many basalt samples we have from the 
Apollo, Luna and meteorite collections.   Because 
many of these basalts have undergone fractionation, 
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and some involving the V compatible phase chromite, 
only unevolved samples must be considered in these 
estimates.  Consideration of available data by [10] 
shows that the Moon has only a small depletion of V 
relative to chondritic values.   
Mars: The V content of the primitive martian mantle 
must also be estimated from a few basalt samples we 
have from meteorite collections.  Because many of 
these basalts have also undergone fractionation involv-
ing chromite, only un-evolved samples must be con-
sidered in these estimates.  One of the most primitive 
samples known is the shergottite Y980459 [15]. Con-
sideration of available data by [10] shows that Mars 
has a higher V/Al ratio than chondritic values.   
Vesta: The V content of the HED/Vesta mantle is 
lower than any other body known.  However, our sam-
ples of the eucrites represent a suite of liquids of simi-
lar origin.  These liquids may have been fractionated 
and thus seen the effects of chromite fractionation.  On 
the other hand if they are primitive, unfractionated 
liquids, they may represent a severely depleted mantle 
compared to the Earth, Moon and Mars.  The signifi-
cant depletion of V in the HED mantle in Figure 2 is 
based on the assumption that no chromite has fraction-
ated from the eucritic liquids and that they are primary 
derivatives from the HED mantle. 

 
Figure 2: depletions of V for different planetary man-
tles.  From Righter et al. (2006) [7].  

 
Models 
Earth: The ratios of lithophile elements such as Sm/Nd 
and Lu/Hf, as well and Hf and Nd isotopic composi-
tions, in the primitive mantle can be satisfied by frac-
tionation of 10-15% of an assemblage consisting of 
Mg-perovskite, Ca-perovskite and magnesiowustite 
[16].  Using published D(V) for these phases, and a CI 
chondrite as a starting material, it can be shown that 
the small depletions of V in the primitive terrestrial 
mantle could be caused by fractionation of these 

phases.  This scenario is an alternative to the very high 
temperature and pressure models that have been pro-
posed for V depletions [3,4].    
Moon: Segregation of the small lunar core is unlikely 
to have caused a significant V depletion, as it did for 
other more siderophile elements such as Ni and Re 
[17].  Additionally, the D(V) met/sil for redox condi-
tions relevant to the Moon (IW-2), is too small to have 
caused a depletion (Fig. 2).  As a result, the lunar de-
pletions must be attributed to a previous differentiation 
event, perhaps inherited from the mantle of the impac-
tor that formed the Moon.  Such an impactor could 
have been a large body, such as Mars or Earth, that 
underwent a V depletion due to silicate and oxide frac-
tionation. 
Mars: The depletion of V in the martian mantle, simi-
lar to the Earth and Moon, presents a problem for the  
high PT reduced core formation scenario proposed for 
the Earth [3,4].  A high PT scenario for Mars is incon-
sistent with most siderophile elements (Ni, Co, W, 
[18]).  In addition, the ‘reduced followed by oxidized’ 
accretion scenario [4] won’t work for Mars, since its 
mantle is not deep enough for a significant (or any at 
all) Mg-perovskite stability field [11].  Instead, V de-
pletions produced by intermediate or deep mantle 
phases (oxides or silicates) can easily explain the mar-
tian V data.   
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